
AD-AO85 190 MASSA CHUSETTS INST OF TECH CAMBRIDGE OPERATIONS RESE--ETC F/G £2/2
DI SAG'GREGAT ION AND RESOURCE ALLOCATION USING CONVEX KNAPSACK PR--ETC U)

UC_ MAR So0 AR BITR AN , A C HAX NOGGIN 75-C 0556

UNCLASSIFIED TR-175 NI.*i mhhEohEohhhE

LmNI

111111110-2
1111114L
IIIIII

111L2 1.

MICROCOPY RESOLUTION TEST CHAPT
NATIONAL BUREAU OF STANDARDS-I963-

,. 2.....,:{iili., I l , l;-:l MMl'/l/ll: IM

SDISAGGREGATION AND RESOURCE ALLOCATION
rt i! USING CONVEX KNAPSACK PROBLEMS

WITH BOUNDED VARIABLES
by

. wGABRIEL It. BITRAN
0.",-,, :" ... ARNOLDO C HAX

Technical Report No. 175

OPERATIONS RESEARCH CENTER

r"TIC
• : C;. --TE~l
:i

L
' JUNO 19Mg

A
MASSACHUSETS INSTITUTE

TECHNOLOGY

A -Apploved 1ot public !elea.'e;

-J

80 5 9 081

...
_ _ _ _ _ __-A

r Unclassified
SECURITY CLASSIFICATION Of THIS PAGE (Whun bet Iffit-00_______________

REPORT DOCUMENTATION PAGE _________________

NVEX,~NASACKPROBEMSWIT OUNDD IALES,* PRFORIN OG. EPOR ramS

AISAGGEGATIO DECLASSIWICATION/OOWNGRADING

.0.DITRIUTONSAEET PRO L.M IRe) BONEjIBLEP0 4 ER n.RPR U

j~TK~47-/00

0S. PEOMINTAG NOTESAD DDES

ResT.Ourerlation eerhCne

DisaggregatincySre

See
1 pages

16. AN7 D ISTRBUIO SA ETION OP 1 NO r5OSLEtUcasfid TIRelesabe wthou liitaionon dsseinaion

SECURITY CLASSIFICATION OF THIS P"AS(ik Det. suv4

SECURITy CLASIPICATION OF THIS PAGE(Wh n Dme llp j
. . .N -- - '

DISAGGREGATION AND RESOURCE ALLOCATION USING

CONVEX KNAPSACK PROBLEMS WITH BOUNDED VARIABLES

by

GABRIEL R. BITRAN

and

ARNOLDO C. HAX

Technical Report No. 175

Work Performed Under

Contract N00014-75-C-0556, Office of Naval Research

Multilevel Logistics Organization Models

Project No. NR 347-027

J

Operations Research Center |_

Massachusetts Institute of Technology , . ,.

Cambridge, Massachusetts 02139

March 1980 -

7' Crdos

Avail Pii/lor

Reproduction in whole or in part is permitted for any purpose of the

United States Government.

I lIilI I _U nii

FOREWORD

The Operations Research Center at the Massachusetts Institute of

Technology is an interdepartmental activity devoted to graduate educa-

tion and research in the field of operations research. The work of the

Center is supported, in part, by government contracts and grants. The

work reported herein was supported by the Office of Naval Research

under Contract No. N00014-75-C-0556.

Richard C. Larson
Jeremy F. Shapiro

Co-Directors

ABSTRACT

Disaggregation and resource allocation problems can be often

formulated as convex knapsack problems with bounded variables. In

this paper, we provide a recursive procedure to solve such problems.

The method differs from classical optimization algorithms of convex

programming in that it determines at each iteration the optimal value

of at least one variable. Applications and computational results are

presented.

1. INTRODUCTION

In this paper we present a recursive method to solve the following

continuous knapsack problem with bounded variables:

(N): z - min E G (x

Ex - Pe (1)
jJJ

Lb _< xj < ubj jcJ" (2)

xjCX Je

where GC.) for JEJ* are differentiable convex functions on the open convex

sets Xj C R, JJ respectively.

Problem MD arises in many different settings. We briefly illut, rate

some of the major applications.

In production planning and scheduling, problem (N) arises in the

following way. The allocation of production resources, as for examnle

labor hours or machine capacity, is made with aggregate data. The results

are aggregate plans that must be implemented at the detailed level an, t!i.refore

need to be disaggregated. It is at this point that problem (N) plays an

important role. Two of the objective functions encountered in these

situations are

a) G (x) - + 1 hx jeJj

where for each iteri 1, Si, Dj, hi, and x correspond to the setup cost,

the demand, the holding cost per period and the number of hours of labor to

be assigned to the item.

-2-

" (A Ik-SSk) x- Alj + SSJJ

b) Gj(x 1) = ((kj

The quantity P* represents the total number of labor hours assigned by the

aggregate plan to the family composed by the set of items {k: kcJ*). Por any

generic item kEJ*, AIk , SSk , Dks and xk are respectively, the available

inventory, the safety stock, the demand, and the number of labor hours to

be allocated to that item. In this case, problem (N) attempts to equalize the

run out time of each item J, i.e., the length of time that the number of

units produced during xj will last, with the run out time of the family

{k: kcJ °1.

Constraint (1) typically assures that the disaggregation process is

consistent with the aggregate plan while, the lower and upper bounds (2)

guarantee respectively that the demand for each item will be met and that

the overstock limit will not be exceeded. Other applications to production

planning can be found in [2] and [31. A related application is the extensive

use of problem (N) in inventory control to dtermine lot sizes and bufer

stocks under aggre:ate constraints (see [6] and [8).

Very often the allocation of financial resources gives rise to knapsack

problems with bounded variables. A typical objective function in this

instance is

Gj x1) - i N(x1+c)/(x 4) with m > c J" J

-G (x) represents the return of investing x units in activity J. Constraint

(1) indicates that the total amount available for investment must eaual P*

and the lower and upper bounds are imposed by the market. Of course, the

function G (x) need not be identical for all JJ*j.

Some other contexts where problem (N) has been applied are the theory

-3-

of search [4], the allocation of promotional resources among competing

activities [9], [11], and subgradient optimization [5].

In many instances where (N) plays an important role the set J may

have several hundreds or thousands of elements. Moreover, the problem has

to be solved many times. In hierarchical production planning, for eP:ax"le,

(see [2] and [3]), problem (N) typically is used in two or more levels of

disaggregation and is solved at the beginning of each period. Consenuently, an

efficienc method to solve the continuous knapsack problem with bounded

variables is of central interest to many applications.

Formerly, this Problem has been treated, for particular objective

functions, by convex pragramming arguments [4] and by dynamic programming

[11]. Luss and Gupta [91 have presented an iterative method mainly for

strictly convex decreasing functions and a one pass algorithm for a set of

particular functions with the variables bounded from below. Luss and

Gupta's method consists in relaxing the upper bounding constraints. The

algorithm proposed in this paper applies for a more general set of functions

whenever the simpler problem of the form min {E G(x) •st Ex -
= P, x eX },

obtained by relaxing both bounds (2) and solved at each iteration, has q' solu-

tion. This ccndition is met in most practical applications. We also Provide

results for the case where the relaxed problem has no solution. At the end

of each iteration of our algorithm (except possibly the last),we show that

either the subset of variables {x : xj > ub I have optimal value ub in

(N) or the subset {x x. < Lbj have optimal value 1bj in (N). ThiR

characteristic of the algorithm differs from classical convex progra-inr

methods. More recently Armstrong, Cook, and Palacios-Gomez [11 developed a

branch and bound algorithm to solve a problem related to (N). They require

the variables x to be either equal to zero or to be in the interval [lu]JEJ*

and the functions Gj() JcJ are assumed to be concave increasing on [l,u1]

and zero elsewhere.i

-4-

2. THE ALGORITHM

In section 1, we assumed that the functions Gj(xj) are convex and

differentiable. Without loss of generality we can add the conditions:
a) ubj > tb JcJ* since, if ubk - Eb k for some kcJ* the value of xk is

determined. Hence, k can be deleted from J* and P* replaced by P*-7.

b) E Lb < P0 < E ub . Otherwise the problem is either infeasible or

the solution is trivially determined.

(N) is a convex problem with linear constraints. Hence, the correspond-

ing Kuhn-Tucker conditions (3) - (9), below, are necessary and sufficient [101

for optimality of xji JcJ0.

Let DC (x) denote the derivative of G1 (.) at the point x and let

x for JeJ* be an optimal solution to (N). The Kuhn-Tucker conditions are:

DGj(x 1) + A + uj - T = 0 JJ0 (3)

u. (xj-ub) - 0 j cJ ° (4)

T (Xb-xj) = 0 J J0 (5)

xj = P0 (O)
jejo

,bi < xj < ubj joe (7)

XR, uj > 0, Tj > 0 .. JO (1)

xj eX jtjo (9)

X, uj, and Tj are the Kuhn-Tucker multipliers associated with the constraints

(1), ubj-x > 0 and x-£bj >. 0 JcJ* respectively. When ub - 4-+ [bLb - -]

for some JEJO, the corresponding condition (4) [(5)] and multiplier Uj [TJ].

are deleted.

We first state and prove the optimality of the algorithm under the

assumption that all relaxations N(B) of (N) encountered in step 1 have an

optimal solution. At the end of this section we relax this assumption.

The Algorithm

Initialization: J1 = jO, P1 p.

Iteration 8 (8=1,2,3...)

Step 1: Solve N(0) min {E G (xj) j8 Xj = PB, x EXj JeJ

and let the solution be x8 jJ 8. If Lb < x8 < ub jJJ define
jx i i

X j Xj J j and stop,the solution x JsJ* generated by the

algorithm is optimal. Otherwise go to step 2.

Step 2: Compute

A (x ub where J0 8j : x' > ubj}
J (j J+

and

V8 E B(Lb -i) where J_ jJ x8 L

Step 3: If AO > Va define ub JeJ+ and let

Xj ub+V P bJ
j l= j

8+ p +l =~ p Z 8~+ ubj.

jeJ;
If A < V' define xj bij jcJ _ and let

j + kl =0+l =- Z Lb

if l^ = stop. The solution Xj jEJ0 generated by the alporitbm

is optimal. Otherwise let $ - B+1 and go to step 1.

Since at each iteration the set JS is reduced by at least one element, the

algorithm is finite. The algorithm relies on the fact that it is general.y

much easier to solve N(B) than (N). Problem N(B) can be solved by using

its Kuhn-Tucker conditions. In fact, in several practical applications it

-6-

is even possible to obtain a solution in closed form.

To prove that xj JCJ, generated by the algorithm, solve (N), we construct

a corresponding Kuhn-Tucker vector through the following results. Let XS be

the Kuhn-Tucker multiplier associated to the knapsack constraint in 'Wa).

Lemma 1: If at iteration 8 A > VO then

a) for any seJO we have -DGs (ub) > -DGi(ubi) for all icJ-J+ and -DG(ubs) >
8

b)X +1 <X

Proof:

a) 6 = -DC (xO) jeJ. Let scJ a and iJ 8 -Jo. Since the functions C (-)
i J +.

are convex, for any pair x x in X we have [10]:

[DG (x2)- DG (xl)I(x- x) > 0 (10)

It follows that

-DGs ub > -DG (A G =D (x)> -DG (ub)
s - 5s i - i i

b) E x - pB - r < pB ub 8 1 x

J 8 k8 JJ jB X - j aj =+I
B~8+x 8+1us

For at least one j 0 J + 1 we have x $o 6 Thus
00o 0

= -DG (x +1) < -DC (x 8) X 0
ii JoJoJ

where the inequality follows from (10).

Similarly,

Lemma 2: If at iteration B Aa < Ve then

a) for any sJ6 we have -DG(ib) < -DG(Lb) for all W 8-Jo and -DGs(1b _

b) X
+ l > X

The proofs of this lemma and of theorem 4 are omitted because they are similar

to those of lemma 2 and theorem 3 respectively.

& __ ____ ____

-7-

Theorem 3: Assume that Ap > Va, At < vi i=8+I,2 .. ,y-1. Then

a) 9' D (J8-38-J8

b) X

Proof:

p0+I . E x +1 - x - E ub E+ x E xO+A

++ + (11)

P = +2 = I x +I - E 9b =

J eja
+ 2 J cJa

+ I XJ jcJ
+ I

= x+ x+A B - E kb.
Ji 0+I j+I j 0_8+1

•/xas, since J +2 = 5+I-j +I

p = Y. E + A$ - E (kb -x) (12)

+2 j 8+1
j~j jcJ-

Similarly we obtain

PY Z x + A y-1 x

= E +A- E E (kb -x). (13)
j~jY s-a+l jc s

From (11) it follows that for at least one joCJ
4

B+l x (i,)Jo - Jo

But, from the Kuhn-Tucker conditions for N(O) and N(0+1):

-DG (xO) - X and -DGi(x +l) - +1 icj 0 I (15)

Combining (10), (14), (15), and lemma lb) it follows that

xB 1 _ x for all J 0+1 (16)

&i "

-8-

Note that if A8 0 0, then x - xj Jej solve N(0+1) and if A > 0, at

least one inequality in (16) will be a strict inequality. Moreover, if the

functions G are not all strictly convex, it is possible that -DGJo (xjl

X - X8 . In this case N(a+l) may have more than one optimal solution.

However, at least one will satisfy (16). Thus

38+1_ C J_ and A8 - Z (ib -x) > . (17).
j _ _ --

B+2 0+1 8+1
Similarly, (12), (17), and the fact that J 3 -jI imply that

x+ 2 > x for all JeJ8+2 j C+2C J- and

A8 - M (-x) (bj-xa) > O.
J 8+1 jej _+2 1 -

Thus,

p 8 +3 > Ep8+3 = Z x+3a+3 . 0j+3R X

jeJ jEJ

Continuing with the same reasoning, we obtain

y-1jc C 8 i8+1,.... y-l; A 8 Lb- 8

ii --CJ E E (Lb -x) > 0

s- -5=
8 +l jEjs

and from (13)

PY= z x' •> x8 (P)

jejy jJoyJ

These conclusions together with J6+1 ja - is and Ji+l = i i i
+ i

prove part a). From (18) it follows that x > 0 J~ '. Thus, fro (1n)

and (15) with y instead of 8+1

S - -DG (xY) < -DG(x;8) = 8 •

ii ______

Theorem 4: Assume that As < VS, A > i-Bl,82,...y-1. Then

a) j'y 2 (Jk8 -3-J)

b) X8 a < Y

Theorem 5: The set xj JcJ* generated by the algorithm Is optimal in (N).

Proof: By lemmas 1 and 2, theorems 3b) and 4b), the set xi JeJ* Penerated

by the algorithm has the following property:

-DG (ub) > .. -DG (b >-G(
-kp kp 11

= -DG (xb -DG (b -DGi (bi) (19)
Vg g 1 1 s

where, the indices k1 , k2 ,..., kp; i1 i..., i, and v, 2,..., v correspond

to variables for which the optimal value was set at the upper bound and lower

bound in step 3 of the algorithm and variables whose optimal value was

obtained in step 1 of the last iteration of the algorithm respectively.

To see that conditions (3) - (9) are satisfied take,

X f -DG (x*)
v 1 v1

Ti = + DG tb I > 0, ut = 0 =1,2, ... s

S-DG k (ubk) - A > 0, Tk = 0 J-l,2,...,p and

Tvj Uvj= 0 3=1i,2,... ,g.

Thus, since xi jcjo also satisfies (6), (7), and (9) it follows that

Xkj b Ubk Jf1,2,...,p; xvj . X v J-1,2,...,g; and

xj " Zb J-l,2,...,s solve (N).

,-. - .~,-.-- --

wo"-

.6L.

Since the algorithm depends strongly on the existence of a solution

to N(O) we prove the following theorem. Let xj () denote a point in R

where DC[x ()] X.

Theorem 6: If G (*) JCJ are strictly convex and differentiable on X

then, a necessary and sufficient condition for N(O) to have a solut-on is

that there exist X and A such that1 2

Sxj (Xi < P a < E- x (X2) with

JcJ ° JEJ j 2

xi (X1)EX and xj (X2)EXj j Cja

Proof: Sufficient Condition: The functions xj(A) JEJO are continuous.

Thus, _x () is a continuous function of A. Moreover, Xi JcJ aare openjEJ
0

intervals in R. Therefore, there are a A 0R and points xj (A 0o)EX je such

that E j xj (o = P
j U

Necessary Condition: Follows from the Kuhn-Tucker conditions

for N(B).

It is worth pointing out that a necessary condition for N(O) to have a

solution is that

max lim DG,(x 1) < min lia DG (x. (2A)
J xj, x-ia J jj8 xj-bj

xeX xjX

where

aj = inffxcR: xjcX i We and

b = sup{xER: xjcX i JeJ8

Condition (20) can be useful as a tool to conclude that N(B) has no solution.

When there are strictly increasing and decreasing functions over Xt among

the functions G1 (.) Jcj., N(O) has no solution. In this case the left band

side of inequality (20) is negative. The next theorem shows how to cope with

.

this difficulty.

Let J, . {j:jQ: (j(,) is strictly decra in ing, Jo th and let

1J2 00Je : j(G) is strictly decreasing, J2 0s Note that we do not

require J°-J -J2 to be an empty set. Assume that (N) has an optim.' coiltion

xj JcJ*, ubj < 4 and Lbj > - jcJo.

Theorem 7: The optimal solution of (N) is such that either

xi = ubi iCJ 2 and/or xI = bi ieJ1 .

Proof: The optimal solution satisfies (3) - (9) and in particular

-DG (ub) A + uj jcJ(ub) {JcJ*: xj - ubjJ

-DG (lb) - X - T JcJ(tb) {JcJ*: x - Lb I and

-DGj (x) = X JJ ° - J(b) - J(ub).

Note that the assumption P0 > Z kbj implies J°-J(£b) 0. If
* j eJ°

min{-DGj(xj) jcJ°-J(Ib)) > 0, since -DGi(xi) < 0 ieJ1 , it follows that

J1 C J(Ib). Otherwise, since -DG (xi) > 0 ieJ 2 and -DG (ub1) > -Dr.(x) >

-DGk(£bk) for any JcJ(ub) icJ°-J(ub)-J(9b) and kcJ(zb), we have thpt

12 S J(ub). -
A direct consequence of theorem 7 is that the solution to (N) can be

obtained by solving the following two problems

(N): z1 = in{ E G (xj): E x P*- Z ub Lbj<x <ubj J9-J

J1J-32 J J-J2 J2

(N2): z min{ . 0(x): E x Po- Z Lb Ib <7.<t. JJ-J}
JJO-J1 JJo-J1 j JeJ1 J- - I

and taking z m in (E Gj(ub)+z , E (Ibj) + z2). By analyzile the
uJ2 (I JcJ 1 t p)

SKuhn-Tucker conditions (3) - (9) it becomes apparent that problem (1) has

-12-

no solution if there are simultaneously a strictly increasing G() with

Lb - - and a strictly decreasing G J2(.) with ub - 4J o and these two limits

are attainable on X and X respectively. Our algorithm does not apply in
ii xJ2

these instances. However, it is not difficult to show that Theore. 7 holds

if only decreasing functions (increasing functions) have unbounded upper

bounds (lower bounds).

Concluding this section we consider a version of problem (N) when the knapsack

constraint is an inequality. Let (N<) and (N>) be the versions of (.) with

constraint 1 being an inequality of the type < and > respectively. .or each

index jcJo let h be the value of x for which DGj(x) - 0 over Xj. If such

point does not exist we adopt hj " -o (4uo) in Theorem 8 (Theorem 9) below.

Let xi JcJ ° solve (N. The indices k vj, and i correspond to thoce in

expression (19).

Theorem 8:

a) If A- -DG (x) 0, x x j JcJ solve (N<)

b) If - -DG (x*) < 0,x defined as:vj v j

x i - kbi JI1,2,...,s;

xvj - max (9b vjh J) Jl,2,...,g;

xk - max (Xbk hk) for all k such that DGk (ubk) _> ; and

j i i j

Xk i ub k for all k such that DGk (ub k) < 0 solve (N<).

Theorem 9:

a) If X - -DG (xv <O,x "x* jcJ solve (N>)
vi v J ji z

b) If - -DG (x > 0, x . defined as:
Vi i

xk - ubkj JI,2,...,p;

.~~~~ i k -i

x - min(ub ,h) J-1,2,...,g;
vi Vi Vi

x ,miu(ub ,i) for all i such that DG (Lb) < 0;and

X =J~b foralli schthat DG (Zb > >0 solve(N)
iI

Therem8 ad 9show that problems (115S) and (N?) can be solved by first

applingouralgorithm to solve (N) and next making appropriate chanpes to

xj JEJ.The proofs of both theorems have been omitted because of their simpli-

city Theextensions of the last two results for the case where the solution

to polm(N) has all variables at the upper or lower bound is strni!,Ntforvard.

-14-

3. COMPUTATIONAL RESULTS

Tables 1 through 7 present the results of solving 84 problems of type

(N). All problems were solved by the algorithm described in this paper and

whenever applicable by Luss and Gupta's method [9]. For identification

purposes, our algorithm is denoted by BH, while the algorithm in [9] is

denoted by LG. In each problem, the objective function was composed by

functions Gi(xi) of the same functional form. They are indicated in the 'irst row

of each table. Following the time in seconds to solve each problem, by both

methods, is the number of iterations required. n represents the nu-ber

of variables in a problem. For a fixed n we solved three problems for

each type of objective function. In Luss and Gupta's method [9] the order-

ing of the derivatives evaluated at the lower bound of each variable was

executed by the "Quicksort Method" [7]. In our algorithm, problems T(f)

were solved using the corresponding Kuhn-Tucker conditions. Luss and Cupta's

algorithm does not apply to the problems of Tables 6 and 7, because eitber

the objective functions are strictly convex increasing (Table 6) or

we have not imposed, as their algorithm requires, any condition amonp the

values of the bounds, Po and the point where each of the G Ci(x i) atteins its

minimum (Table 7). The computer used is a Borroughs B6700. The propre.s were

written in Algol. Applications of problems presented in Tables 5 and 7 to

hierarchical prodction planning can be found in [2] and [3]. The para-

meters (similtbiubi, etc.) corresponding to problems of Tables 1 throub.

5 (6 and 7) were randomly generated in intervals where the functions ri(xi)

are strictly convex decreasing (strictly convex).

For the problems presented in Tables 1 through 5 we have noticed that the

time required by Luss and Gupta's method Just to compute the derivatives at

the lower bound and order them is comparable to the total time of our alvorithm.

-15-

As a final note, we would like to point out that, although we have

tried to program both algorithms as efficiently as we could, the computational

results should be looked upon with caution. The intent of includinp the

results of these experiments is to give to the reader an idea of the time

required to solve problems of the type (N) with different objective functions

and sizes. The major attraction of our algorithm is its applicability to a

wider class of problems than the one in 191.

ACKNOWLEDGEMENT

The authors would like to thank Mr. Luis Antonio !alheiros Meloni for

his cooperation in the prograuming of the algorithms and to Thomas L. Hiananti

and Debashish Sarkar for their careful reading of an earlier version of the

paper.

"4 -@
"4 8

C4 C4 C4 -2(4~ 4 "

"4

o 4 0 "q

"44

-1 94 L

C;

r4 -H8 N "-4 co "

0) "4 %V * "4 N-

N d Mr 0% C " C
"4 C' r4 4

0 4 0 4

Go C4

.4 04 M%

w4 "I si "4
-o 0 sfm 4 01

94 - - -- -- - -

0 i
C4 -t0

I -, 00

C n 0-A

C. -4c

w (4 LM

0 .4

- 0 c40

* n LM s.0 i
.4 .4 co r-4 .4 O

.4 C4 r4

A OD Mn N r

C in

.0 -AG o-

41 .4! in N 4 % 0 eC .

HIK .0 0
H4 .4 N %4 r4 0 in

w N n OD 4 1- 0 .

__o in 0.
c4 C I 0 o

40 0M 0o cnCn

N Nn II4 NO
an C IN No .3 0l en.4

0 100 0

n 0 @0 in n

0 in N .4 0 J 4s. "

to0 0 0 "I0w as

V4 4 11H1 .2" .

(.4
OD

ao 40
o 0

0 C.4

C4 C4 in0

('. n
C;

%0

C% Cr

C
C'

4

N

n N 0

U3 ,4 11%

C14 1-I .14

en %0 C6

14 (. . 0 ~ -

-f) t-)
V-1.

0) ,) N

-4

,4
N I 0 cn

.14 C H

.54 r - -40
*

ON4 r0 In

co m
v-4

4.

N 0 0

C44

%4 4

,i .1

op al

-19-

REFERENCES

1. R. D. Armstrong, W. D. Cook, and F. E. Palacios-Gomez, "An Algorithm
for a Nonlinear Discontinuous Knapsack Problem", Management Science
25, 884-894 (1980).

2. G. R. Bitran and A. C. Hax, "On the Design of Hierarchical Production
Planning Systems", Decision Sciences 8, 28-55 (1977).

3. G. R. Bitran, E. Haas, and A. C. Hax, "Hierarchical Production Planning,
Part I", Operations Research Center, M.I.T., Technical Report,

1980.

4. A. Charnes and W. W. Cooper, "The Theory of Search: Optimum Distribution
of Search Effort", Management Science 5, 44-49 (1958).

5. M. Held, P. Wolfe, and H. P. Crowder, "Validation of Subgradient
Optimization", Mathematical Programming 6, 62-88 (1974).

6. C. C. Holt, F. Modigliani, J. F. Muth, and H. A. Simon, Planninp Produc-
tion. Inventories, and Work Force, Prentice Hall, Englewood Cliffs, NJ,
1960.

7. D. E. Knuth, The Art of Computer Programming, Addison Wesley, Readinp,
MA, 1973, Volume 3.

8. S. Love, Inventory Control, McGraw-Hill, New York, 1979.

9. H. Luss and S. K. Gupta, "Allocation of Effort Resources Among Competing
Activities", Operations Research 23, 360-366 (1975).

10. 0. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969.

11. C. Wilkinson and S. K. Gupta, "Allocating Promotional Effort to Competing
Activities: A Dynamic Programming Approach", IFORS Conference, Venice,
419-432 (1969).

A

